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Abslract- We present a set of recent results on the control 
of movements in which the hand interacts with force fields that 
simulate the presence of dynamical objects and of surface 
boundaries. These experiments exploit the possibility of using 
humanlrobot interactions for exploring if and how the 
smoothness is enforced by the adaptive control system. We 
conclude that a) subjects learn to generate smooth motion of 
transported objects and that h) significant exceptions to 
smooth motions are observed in hand movements over curved 
boundaries. 

Keywords- Adaptation, Contact, Force-fields, Smoothness 

1. INTRODUCTION 

One of the milestones in the study of multi-joint arm 
movements has been established by the observation that 
smoothness of movement appears to be an organizing 
principle for coordination [I-31. In particular, Hogan and 
Flash have formulated this idea in what is known as 
minimum-jerk principle: in a reaching movement, the joints 
are coordinated in such a way that the trajectory of the hand 
minimizes the mean squared amplitude of the time 
derivative of hand acceleration, or “jerk”. This organizing 
principle has been studied (and challenged [4] ) in a number 
of experiments on reaching movements. However, less is 
known about movements that involve mechanical 
interactions with the environment. Here, we report some 
recent studies of multi-joint movements in which subjects 
interacted with force fields emulating dynamical objects and 
viscoelastic surfaces. Each of the studies evaluated to what 
degree smoothness of motion is enforced by the adaptive 
control mechanism underlying human motor behavior. 

11. CONTROLLING SPRING-MASS OBJECTS 

A question of significant importance in the control of 
robotic manipulation concerns the control of objects 
connected to the robot’s end-effector via a number of 
unactuactuated degree offreedom [S, 61. This is a common 
skill in human manipulation. When we cany a cup of coffee 
or a spoon, we are not only concerned with the motion of the 
container, but also with the stability of its contents. We have 
investigated how subjects control the motion of a virtual 
mass-spring system, connected to the handle of a planar 
manipulandum [7]. Subjects made straight line reaching 
movements to a target while holding the handle of the 
robotic manipulandum (Figure 1). The manipulandum was 
programmed to emulate interaction forces corresponding to 
the dynamics of a mass-on-a-spring. A visual display 
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showed in real time the motion of the simulated object. 
Subjects were asked to move to, and stop the object in, a 
target zone. Because ofthe spring constant, the object 
tended to oscillate at a frequency of 1 Hz. All subjects 
displayed a learning behavior with a broad range of time 
constants (from 20 to 400 trials). At the end of training, all 
subjects were able to generate monotonic movements ofthe 
object with unimodal, bel:l shaped velocity profiles. To do 
so, the movements of the hand exhibited variable pattems, 
some including bimodal velocity profiles. To account for 
these results, we developed a mathematical model for 
transporting a mass-spring object to a target while 
optimizing a smoothness limctional. This model extends the 
minimum jerk model for unconstrained reaching 
movements. A problem in this optimization arises from the 
increased number of boundary conditions to be satisfied 
when both the hand and the object are required to be at rest 
(zero velocity and acce1er:xtion) at the starting and ending 
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Figure 2 Model predictions. A :  Predicted optimal hand velocity 
profiles for making a 25 cm reaching movement with an object ofMO 
= 3 kg and KO = I20 N/m bi the desired final movement time is (7) 
varied. E :  Corresponding object velocity profiles. Object 
movements are always uni-phasic, whenas hand movemmLs are uni- 
phasic for T> 1.34 sand bi-phbiic for T< 1.34s. 
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positions. In the minimum-jerk model, only six such 
conditions must be satisfied. In contrast, when controlling 
the motion of a mass-spring object, the number of 
independent boundary condition increases to ten. Solving 
this problem requires a ninth order polynomial, which 
corresponds to optimizing the 5~ derivative of position 
(crackle) instead ofjerk. Optimization of smoothness in this 
generalized sense leads to predictions. In particular, there 
are specific combinations of task and object parameters 
where the model predicts that subjects will transition from 
the typically observed uniphasic hand motion to a biphasic 
hand motion (Figure 2). Such transitions are expected when, 
given a total distance, the required movement time decreases 
below a threshold. Altematively, a transition from uniphasic 
to biphasic hand profile is obtained when, given a distance 
and movement time, the object’s resonant frequency is less 
than a threshold value. Both transitions have been 
empirically observed when subjects learned to carry virtual 
springhass objects with different resonant frequencies and 
with different time requirements. These findings support the 
idea that smoothness of motion is a general principle of 
movement planning, which extends beyond the control of 
hand trajectories and applies to the motion of transported 
objects. 

111. DISTURBANCES VS. BOUNDARIES 

In the previous experiment, a manipulator was programmed 
to emulate the interaction with a transported object. This 
mechanical interaction is a dynamical force field that maps 
the state of motion of the hand into an applied force. The 
objects that we come in contact with in the environment can 
be represented as force fields. Ideally, the boundary of a 
rigid object has infinite stiffness. As we touch it, the hand 
cannot penetrate inside this boundary and, as stated by 
Newton’s law, the boundary generates a force equal and 
opposite to the force that we apply. Of course, rigidity is an 
idealization of actual physical behavior. Nothing perfectly 
rigid exists, in reality. Object boundaries have impedance 
properties and reacts with a force to an applied motion. In 
many cases this motion is at all effects negligible, as for the 
surface of a desk. But in other cases, the motion at the 
boundary can be large, as when one pushes on a pillow. 
Given that an object boundary can be represented as a force 
field, the identification of such force field and the 
identification of an object’s shape through touch requires 
adapting the hand motion to the surface shape. This differs 
quite strikingly from other known adaptive responses to 
perturbing force fields [E]. Earlier studies have shown that 
in response to a force field applied to the hand, subjects 
react by enforcing a smooth trajectory. To do so, they 
generate forces that counteract the disturbing field and that, 
during unexpected release of the perturbation (catch trials), 
lead to an after-effect opposite to the initial deflection of the 
movement. In contrast, if one encounters a rigid object 
boundary, the obvious response is to comply with the shape 

Figure 3. ApparaNs for the emulation o fa  vimal planar boundary. The 
W O  dots on the circumference an the movement targets. The subjects 
did not see the outline of the circle. 

of the boundary. Thus, the identification of a force field as a 
perturbation or as a boundary is expected to induce 
divergent responses: modification of the planned trajectory 
(object) or enforcement of the planned trajectory, with 
counteracting forces. These two responses would lead to 
opposite after-effects: deflection in the direction of the 
expected force field (object) or opposite to the expected 
force field (disturbance). 
We have carried out experiments aimed at a) testing the 
hypothesis that such a dichotomy exist and b) determining 
if there is a threshold of stiffness below which a field is 
compensated as a disturbance and above which it is 
interpreted as a boundary. This analysis is based on the 
observation of after-effects of adaptation. 
The experiments involved subjects executing trajectories 
while holding the same planar manipulandum of the 
previous study (Figure 3). In this case, the robot was 
programmed to render mechanically a planar virtual 
boundary, a disk, with variable mechanical properties. The 
virtual boundary was implemented by the following control 
law: 
F ( r )  = {:(R-r)+i?i r < R  

r > R  
where r is the distance of the hand from the center of the 
disk, R is the radius of the disk, K and B are stiffness and 
viscosity constants. The center of the disk was places in 
front of the subject, at about 35cm from the subject’s 
shoulder. In this experiment that radius was set to 8cm. 
Subjects were instructed to make reaching movements with 
the hand between two points on the boundary of the circle. 
The experiment was dividend in 5 phases, following a 
typical field-adaptation protocol [E]: 
1) 60 movements. Unperturbed familiarization (no field). 
2) 50 movements. Training with virtual surface. 
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3) 50 movements. Training with virtual surface and with 

4) 50 movements. Unperturbed (washout) movement. 
Each subject repeated this procedure repeated with different 
stiffness levels ( K =  200, 400, 800, 1200, 1600, 2000 Nim). 
The start and goal position, and a cursor corresponding to 
their hand position, were visible to the subject during 
testing. The boundary of the virtual surface was not visible 
to the subject. 
To evaluate the amplitude and direction of the aftereffects, 
the "signed area" between the trajectory and the straight 
segment joining staft and end target was calculated 
(positive = trajectory in the direction of the field; negative = 
trajectory opposite to the field): 

pseudorandom catch trials, causing after-effects. 

(the start and end targets were on the y-axis, that is in the 
frontal direction, the x-axis was oriented rightward with 
respect to the subject). 
We found that subjects' trajectory adaptation depended on 
surface stiffness (Figure 4). When a surface's stiffness 
exceeded a threshold value, subjects adapted by learning to 
produce a smooth trajectory on the surface. This was 
revealed by the aftereffect being in the direction of the 
applied forces (positive area), that is following the profile of 
the virtual boundary. At lower stiffness values they adapted 
by recovering their original kinematic pattern of movement 
in free space. Accordingly, the after-effects were oriented 
against the field, as in the force-field adaptation 
experiments. These responses suggest the internal 
representation of two distinct categories through a 
continuum of force fields: force disturbances and object 
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Figure 4. Signed area between the aftereffect trajectories and the 
straight segment joining smrl and end position vs. boundary stifmess of 
the vimal disk. Negative area correspond to movements opposite to 
the force field. After effect trajectories are also platted above the 
corresponding stifmess values. 

boundaries. In the first case, the interaction forces are 
resisted and the trajectory is restored. In the second case, the 
trajectory is modified so as to reduce the interaction forces. 
The transition between these categories was found to take 
place approximately at a :boundary stiffness of 1000 Nim. 

IV. CONSTRAINED MOTIONS OVER CURVED SURFACES 
The previous experiment suggests that subjects switch from 
planning a smooth rectilinear motion when the boundary is 
soft to a curved motion when the boundary is hard. The 
second choice corresp0nd.s to the intention to move on the 
boundary, rather then resisting it. However, with a rigid 
boundary, smoothness can still be recovered from a 
constrained optimization :principle. What is the trajectory 
corresponding to a minimum-jerk criterion over a spherical 
surface? The analytical answer is obtained by minimizing a 
functional 

where 
h i s  a Lagrange multiplier penalizing the undesired 
penetration into the constraining surface g: 
g(x,y,z)  = x2 + y 2  + z 2  - r z  = 0, 
where r is the radius of th,: sphere. The resulting problem is 
a two-point boundary-value problem with 18 boundary 
conditions. While the analytical solution of this problem is 
complex, the outcome is geometrically quite simple: the 
minimum jerk trajectory t.akes place along the segment of 
geodesic joining start and. end position. The speed along 
this segment follows a unimodal, symmetric temporal 
profile. As the identificati.on of a geodesic line depends 
upon knowing the shape (:i.e. the radius) of the surface, 
constrained smoothness can only be achieved through a 
learning process. Do we actually learn to move along 
geodesic lines if we are repeatedly moving our hand over a 

rrEt 1 %*.' ..D 
Figure 5. Experimental apparatus for the generation' of vimal surfaces. 
The subject is grasping the handle o f  a Phantom 3.0 (Sensable Tech.) 
that generates a force field can'esponding to a soherieal surface (not 
visible to the subject. 
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spherical surface? Do we develop a representation of the 
surface? To address these questions, we have investigated 
how subjects respond to force fields that emulate the 
presence of a spherical surface. We have analyzed two 
features: a) the trajectory of the hand and b) the contact 
forces against the virtual surface. 
Twenty-two subjects grasped the end-effector of a robotic 
device (Figure 5). They were asked to make repeated 
movements with the eyes closed between two imagined 
targets. The robot rendered a virtual surface that constrained 
movement to a hemisphere in the center of the workspace 
(40 cm diameter). Afler the subjects practiced the movement 
for approximately one and half hours, we compared the 
change in mean contact force and in distance from the 
geodesic segment joining start and end positions. We also 
evaluated these quantities for movements to a different (test) 
target. Results from a single subject are shown in Figure 6. 
Across all subjects, we found that a) the mean contact force 
decreased by 20% on the training trajectories and by 35% on 
the test trajectories with both changes being highly 
significant @<0.0001); b) the distance from the actual 
geodesic path (“geodesic distance”) decreased by 11% on 
the training trajectory and by 13% on the test trajectory; 
these changes were mildly significant @<O. 05%); c) the 

Figure 6. Training and test results for a subject’s movement an the 
half-sphere: a) Average tangential velocity profiles of hand at four 
phases of experiment. h i t .  test: initial test on the lee side. Init. 

training: initial part afthe training phase on the right side. Final 
training: final part ofthe training phase. Final test: movements on the 
left side, aner training on the right. Min Jerk simulated tangential 
velocity profile of minimum-jerk movements. b) Hand pathways 
recorded during the initial (blue) and final (red) phases oftraining and 
test movements; The solid lines with the lowest z-coordinates are 
simulated minimum jerk solutions (i.e. geodesic paths): c) Average 
and mean average distance between actual and minimum-jerk 
trajectory; d) Average and mean average contact force against the 
virtual sphere; Both measures showed significant decrease with 
practice in both training and test movements @<0.001). 

changes in contact force and in geodesic distance were 
statistically independent; d) while there was a reduction in 
geodesic distance, this variable did not converge to zero 
(Figure 6). In another experiment, sixteen subjects executed 
the same hand movements with the eyes open. In this case, 
the reduction of force was even larger, hut the difference 
with the geodesic path increased, instead of decreasing, for 
some movements. These results suggest that subjects are 
forming an internal representation of the constraint, as they 
learn to reduce the contact forces. However, movement 
kinematics appeared to deviate systematically and 
significantly from those predicted by jerk optimization. The 
optimization of smoothness while reflecting the geometrical 
properties of Euclidean free space may not apply to 
movements constrained by curved surfaces. 

V. CONCLUSIONS 
Smoothness optimization appears to be an organizing 
principle not only for reaching movements of the hand hut 
also for the control ofohjects with dynamical properties. In 
this case, the adaptive controller leams to generate smooth 
movements of the object at the expenses of more complex 
movements of  the hand. Significant exceptions to 
smoothness optimization have been observed in the adaptive 
control of contacts with force fields emulating viscoelastic 
boundaries. In particular, our findings suggest that the 
recognition of such fields as boundaries is revealed by the 
transition from a smooth movement plan to a curved plan 
following the estimated boundary contour. This transition 
appears to take place at a specific threshold of stiffness. 
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