
Supplemental Material
Strictly connected to any definition of modularity are the ideas (a) that the operations of
different modules (i.e. controllers) may be combined to generate a repertoire or results
and (b) that the different modules may act independently without interfering with one
another.

Given these two requirements, consider two hypothetical modules A and B, and
suppose the activation of A corresponds to a motor response FA and the activation of B
to motor response FB. In addition, suppose that the simultaneous activation of A and
B produces a combination of the two responses FAB = Γ(FA, FB), where Γ denotes
a smooth functional. It is quite straightforward to see that among all possible rules
of combination, the principle of vector summation f(FA, FB) = FA + FB is the one
that is most consistent with the two requirements of modularity, (a) and (b). The rule of
vector summation is equivalent to imposing the following properties on the combination
functional Γ(·)

First, that the two modules play a symmetric role in the combination. With some
abuse of notation, one can express this as

∂Γ

∂FA

=
∂Γ

∂FB

(1)

From this condition it follows that the combination of these modules must be a
function of the sum of the two responses Γ(FA, FB) = Γ(FA + FB).

Second, the output generated by each module, when it acts in isolation, is the same
as when it acts in combination. {

FA = Γ(FA, 0)
FB = Γ(0, FB)

}
(2)

This is a boundary condition that constrains the solution to plain summation Γ(FA +
FB) = FA + FB. From these ”rules” of modularity we have established that linear
combination properties are not merely a matter of computational convenience. In a
deeper sense, vector summation corresponds to optimal modularity as established by
the conditions (2) and (3). These two conditions on Γ are both necessary and sufficient
for vector summation.In this respect we may state that vector summation is the most
fundamental rule of combination when the goal is to obtain modularity.


